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PREFACE

This report is written in fulfillment of the requirements of U.S. Navy
Contract NOw 66-032kc. The contract is a "level of effort" type, and the
objectives are covered by the following work statement, taken from the contract.

"Develop and verify an accurate, general, and rapid method of calculating
axially symmetric and two-dimensional turbulent boundary-layer flows. The
specific phases of the work are as follows:

(a) Semi-empirical expressions will be developed for the turbulent trans-
port properties, such as eddy viscosity, for use in solution of the flow
equations.

(b) Solutions of the complete partial differential equations will be ob-
tained for incompressible flow, covering problems of flow in water and in air.

(c) Solutions will also be obtained for compressible flow, applicable to
air.

(d) Illustrative applications of the method will be performed to provide
information on velocity profiles, boundary-layer thickness, skin friction and
heat transfer.

(e) Accuracy will be checked by solution of a variety of flow problems
and comparison with experimental data."

Under this type of contract, when the due date arrives, accomplishments
are reported whether the ultimate goals have been reached or not. In the
present case, as might be expected, the studies are not complete., The problem
of incompressible flow has been rather well explored, although more remains to
be done. The results have been surprisingly good. The equations governing
compressible flow have all been programmed and the method is working, but time
was available to calculate only a few cases of flat-plate flow, with and without
heat transfer. Much more work remains to be done, and the gratifying results
for incompressible flow supply a firm foundation for continuation, which should
follow. The present method has been programicd on the IBM 7094 unler the num-
ber STEB. The program can be obtained by qualified requcsters from "Commander,
Naval Ordnance Laboratory, White Oak, (Code 330), via Commander, Naval Ordnance
Systems Command (Code ORD-035)".

The authors .nd their company wish to express gratitude for the support
supplied by the U.S. Navy. Without it, it is unlikely the work would ever have

been accomplished.




1.0 SUMMARY

This report presents a numerical solution of turbulent boundary-layer
equations for both compressible and incompressible flows. An eddy viscosity
concept is used to eliminate the Reynolds shear-stress term, and an eddy-
conductivity concept is used to eliminate the time mean of the product of
fluctuating velocity and temperature. The turbulent boundary layer is regarded
as a composite layer consisting of inner and outer regions, and a separate
expression for eddy viscosity is used in each region. The ratio of eddy-
viscosity to eddy conductivity is assumed to be constant. An implicit finite-
difference method is used in the solution of both momentum and energy equations

after they are linearized.

A variety of flows have been computed by this method, and comparisons
with experimental data and various correlations have been very encouraging.
The results described in this report do not represent a finished development
but on.Ly what has already been accomplished by using one particular formula-
tion of eddy viscosity and constant turbulent Prandtl number.
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4.0 PRINCIPAL NOTATION

local skin-friction coefficient, eq.(6.113)

average skin-friction coefficient

specific heat at constant pressure

local shear-stress coefficient for laminar flow, eq.(6.114)
local shear-stress coefficient for turbulent flow, ~q.(6.115)

ey s viscosity-density parameter

Pee 5*
equilibrium boundary-layer parameter, - %E
W

dimensionless stream function, eq.(6.46)

dimensionless total-enthalpy ratic, eq.(6.54), where applicable
defect-shape factor, eq.(6.122)

specific enthalpy

total enthalpy, h + %ua or shape factor, eq.(6.121), where applicable
variable-grid-system parameter

mixing length

reference body length

Mach number

pressure

Prandtl number

local heat-transfer rate per unit area

radial distance from axis of revolution

radius of body of revolution

Reynolds number, uex/ve

Reynolds numoc’s ueO/Ve

Stanton number, eq.(6.118)




™ R 0«

4

transverse-curvature term, eq.(6.42), where applicable 8

absolute temperature !
x-component of velocity ‘
friction velocity, \,:;7;‘ |
y-component of wvelocity

distance along surface measured from leading edge or from
stagnation point

distance normal to x

angle between normal to the surface y and the radius r , fig. 4
dimensionless velocity-gradient term, egq.(6.53).

intermittency factor, eq.(6.26), or convergence criterion,

where applicable

boundary-layer thickness

defect-displacement thickness, eq.(6.123)

eddy viscosity '
transformed y-coordinate

womentum thickness, eq.(6.111)

thermal conductivity

dynamic viscosity

kinematic viscosity

transformed x-coordinate

density

shear stress

perturbation quantity, f — fo

stream function

vorticity
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SUBSCRIPTS
¢ evaluated at the switching point of the boundary layer
e evaluated at outer edge of boundary layer
L] evaluated at wall
00 evaluated at free-stream or reference conditions
Primes on f denote differentiation with respect to 1
|
1




5.0 INTRODUCTION

The boundary-layer concept, first introduced in 1904 by Prandtl, divides
the flow past a body into two regions: an inviscid region, governed by the
Euler equations of motion, and a thin viscous region in the neighborhood of the
body, governed by the boundary-layer equations. ~ror laminar flow, the existence
of a known relationship between the shear stress and the velocity gradient
completes a set of partial differential equations, and exact solution of the
boundary-layer equations is mathematically possible. Highly accurate solutions
exist for some simple flows, such as similar flows, which are especially impor-
tant. With the advent of highe-speed computers, quite satisfactory results for
a variety of general flows have been obtained.

For turbulent flows, on the other hand, because of the limited understand-
ing of the turbulent process, the exact solutions of the boundary-layer equa-
tions are not possible. The usual boundary-layer equations for such flows con=-
tain a term involving the time mean of the product of two fluctuating velocities,
which is known as the turbulent shear stress, and a term involving the time
mean of the product of a fluctuating velocity and a fluctuating temperature.

At the present, these terms have not been rigorously related to the mean velocity
and mean temperature distributions. Thus, exact solutions of the boundary-layer
equations for turbulent flows are not possible. In order to proceed at all,

the solutions must depend on some empirical information. Even then the solution
of boundary-layer equations is not easy. For this reason, most of the work on
turbulent flows has been centered on empirical correlations together with inte-
gral methods. In general, the approaches followed in these methods vary widely.
In one approach, for example, Head's method [1], the boundary-layer parameters
are obtained by solving the momentum integral equation with two empirical ex-
pressions called auxiliary equations. These equations consist of an expression
for local skin-friction coefficient (cf) and an expressior. for shape factor (H).
In another approach, for example, Truckenbrodt's method [2], the boundary-layer
parameters are obtained by solving both the momentum and energy integral equa-
tions by using an empirical expression for the dissipation integral and by
introducing further approximations in the solution. These methods were recently
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reviewed by Thompson [3] for two-dimensional incompressibie turbulent flows
and were found to give widely differing and often inaccurate results.

A more fundamental approach to the solution of turbulent boundary layers
is to regard the turbulent boundary layer as & composite layer and to charac-
terize it by inner and outer regions (see figure 1). The existence of two

g

Ug -
OUTER REGION
v
8
INNER REGION
¥ =
LAMINAR * SUBLAYER v

Figure 1.-A turbulent-boundary-layer velocity profile.

regions is due to the different response to shear and pressure grtdient by the
fluid near the wall. The inner region, whose thickness is approximately 0.1 to
0.2 8, depends primarily on the wall shear stress and fluid viscosity. The
mean velocity distribution in this region responds rapidly to changes in these
wall conditions because the eddies in this region are very small. The mean
velocity distribution may be described by the sco-called "law of the wall":

U - @ (/)

This relation was originally obtained by Prandtl from a mixing-length
concept [4]. In addition, if an expression for eddy viscosity is introduced

in the inner region, it can be shown that eddy viscosity in this region varies
almost linearly with distance.




-13-

In the case of a smooth wall, the inner region contains a layer, commonly
called the laminar sublayer, adjacent to the wall, where the flow is primarily
viscous and the mean velocity increases linearly with distance from the wall.
The thickness of this layer is of the order of 0.001 to 0.0l &.

The outer region, on the other hand, contains 80 to 90 percent of the
boundary layer thickness. The flow in this region is independent of the fluid
viscosity, but is dependent on the wall shear stress, and it is highly affected
by conditions in the free stream such as streamwise pressure gradient. The
mean velocity distribution is conveniently described by the so-called "velocity-
defect law":

u =u
— = %(y/8)

u

The flow in the outer region shows some similarity to wake flow. Near the
outer edge, it has an intermittent character. The turbulence is characterized
ty large eddies. The response of the mean velocity distribution to changes in
its determining conditions is much slower than that of the inner region. In
addition, an eddy vis-cosity, if introduced, shows a nearly constant value across
the region. For example, as suggested by Clauser [5),the eddy viscosity for
the so-called"equilibrium"” boundary layers is

k 5
€ = 2Que

where k, was empirically determined to be 0.018.

The approach in which the turbulant bcundary layer is regarded as a com=-
posite layer consisting of inner and outer regions was followed in[6] and [ 7]
for incompressible flows. In both references, the Reynolds shear-stress term
was eliminated through the use of an eddy-viscosity concept. The main differ-
ence between the two approaches is the expression used for eddy viscosity in
each region. Another difference is the transformation used to stretch the co-
ordinate normal to the flow direction to reduce the variation of the boundary-
layer thickness and to remove the singularity at the leading edge or at the
stagnation point. A third difference is the method used to solve the boundary-
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layer equations. In reference [7] the momentum equation was solved in its non-
linear form by an integration technique; in reference [6] the momentum equation

was solved in a linearized form.

The approach used in this report is the one used in reference [7]. Again
the Reynolds shear-stress term in the momentum equation is eliminated through the
use of an eddy-viscosity concept, and a separate expression Ior eddy viscosity

is used in each region. (see figure 2). However, this cime the expressions are

\ UTER LAW

Figure 2.- Eddy-viscosity distribution across a boundary layer.

slightly modified, tc account for the compressibility effect. In addition,
the time mean of the product of a fluctuating velocity and a fluctuating
temperature in the energy equation is eliminated through the use of an eddy-
conductivity concept and is introduced into the energy equation through the

definition of turbulent Prandtl number:

Cc €

As an initial step, the turbulent Prandtl rumber is assumed to be constant.
Note that the present framework is peneral and that it can handle widely vary-

ing eddy-viscosity and turbulent Prandtl number formulations.




The method used to solve the boundary-layer equations here is different 4
from the one used in previous studies [7 through 13]. Again the streamwise
derivatives in both momentum and energy equations are replaced by finite
differences. However, unlike the previous studies, in this study the momentum
equation is solved in a linearized form, and the previous integration tech-
nique is replaced by an implicit finite-difference technique. A variety of
flows has been computed by this method, and comparisons with experimental data
and various established correlations are made. The results presented in this
report do not represent a finished development, but are only the results ob-
tained so far by one particular eddy-vic:osity and constant turbulent Prandtl
number formulation, in fact the first one tried.




=16~

6.0 DESCRIPTION OF METHOD OF SOLUTION
6.1 Equations of the Compressible Turbulent Boundary layer
The governing equations describing the flow about two-dimensional and

axisymmetric bodies at high Reynolds numbers and constant pressure within the
boundary layer are [11]:

CONTINUITY

% . %{% (o w) + & (5 v)}= 0 (6.1)
MOMENTUM

p%+pu%+pv%=—%+-i—k£—/\r}(u% (6.2)
ENERGY

ProuPro P L LMoLy p (6

where k = 0 for two-dimensional flow and k =1 for axisymmetric flow.

The basic notation and scheme of coordinates are shown in figure 3,
where u_ is a reference velocity and ue(x) is the velocity Just outside
the boundary layer. The term He, which is a constant, is the total enthalpy
outside the boundary layer. Local enthalpy outside the boundary layer, namely,
he, is given by

}{=h+£u2
e e 2 e

The coordinates are a curvilinear system in which x is distance along the
surface measured from the stagnation point or leading edge. The dimension y
is measured normal to the surface, Within the boundary layer, the

velocity components in the x- and y-directions are u and v, respectively.
The body radius is L




st P i
R e

Figure 3.-Boundary layer on a body of revolution. Coordinate system.

In these equations, the transverse-curveture terms, which are of second
order, are retained because of their importance in preanicting bouwndary-layer
growth on long slender bodies such as certain missiles or at the tail of a
streamlined body of revolution.

The equations (6.1), (6.2), and (6.3) apply tc turbulent as well as to
laminar flows, providing the dependent variables = velocity, density, and
enthalpy — are replaced by their inctantaneous values for turbulent flow.

The procedure is due to O.Reynolds. With instantaneous values, (6.1), (6.2),
and (6.3) become

dp
=+ ]Léa? (o) + & (rkpivi)} = 0 (6.4)
r
du du du, dp. : du
i i i i 1 9 k i
S AU VS A A S A (6.5}

3 OH OH dH du,
i i i1 d kjp i 1 i

0. + p,u, + o,V = —— r +u(l =) u } (6.6)
19t Pitiax T Py T Tk JLP:& Pr’ "1 dy

e

s
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Let the instantaneous values be denoted by their average and fluctuating

values, as follows:

u+ u' v

+ v =p + p!
1 g VT Y by =pP™#P

u

(6.7)

= ] + ?
P, =P+P Ho=H+H

Introducing the first three expressions defined by (6.7) into (6.4) and
averaging with respect to time gives

é%rk(pu+p'_w')+ga;rk(pwr+ p'v') = 0 (6.8)

By time average is meant, for example,
t

-1
us=g fui(t+'r)d'r
0

with t large compared with the time scale of the turbulent motions. For

the fluctuating values, say u', the average value, u'_', is
t

fu'd1=0

0

=
]

I
3 Lo

The momentum equation for steady compressible turbulent flow can be obtained as
follows. Multiplying (6.4) by u,, (6.5) by r, and adding the resulting
equations gives

d, 3

k o i k d , k
UTE A i T (rpjus) + uy 5o (rievy)

i
dp du,
=--!'kdx—:l +%(rku%§) (6.9a)
which can be written as
d dp; d , k
a—(r piuu)+5;(r oiviui)=—rF*y(r MS;—) (6.9v)

Introducing the first four expressions defined by (6.7) into (6.9b), averaging

with respect to time, and using (6.8) gives




—_ Ju — bu__d _A d k 2 —— 2
(o u+ o'u')5;+(DV+ D'V')'av— -Rd.x —rks;r(pu'+up'v'+p'u' )
19 k{ P —_— }
==t r{ s -pviut —vptut —p'viu’ (6.10)
% Y

The energy equation for compressible turbulent flow can be obteined in
a similar way. Multiplying (6.4) by H,, (6.6) by r, and adding the resulting
equations gives

d O,  ,  OH

H Ba? (rk"i“i) *H 5 (rk"i"i) t rk"i“i'Yi ML
oH N
=§?rk{-PLr #Hx(l--l};)ui'gi} (6.11a)

which can be written as
JH du
2 (o)) + & (o)) - & ot we -, ok |
(6.11b)

Introducing the expressions defined by (6.7) into (6.11b), averaginr with
respect to time, and using (6.8) gives

(pu+ ) S+ (ove o) oL S TH + u B + P H)
r

+-%5%rkg“§§—pW+ u(l-:};)u%—vp'ﬁ'—p'v'ﬂj}

(6.12)

Since for flows at high Reynolds number the boundary layer is assumed to
be thin and the terms such as p, u, H, and x are assumed to be of the order
of 1 and v, y of the order of &, some of the correlation terms involving
u', v', p', and H' in (5.8), (6.10), and (6.12) can be neglected. The

double correlation terms such as p*'u', u'H',p'H!, and p'v' are of the order

of & at most, and the triple correlation terms such as p'v'u' and p'v'H!
are of the order of 82 at most. When these simplifications are introduced
into (6.8), (6.10), and (6.12) and the predominant terms of the same order of

o




magnitude are retained, the resulting equations are of the same form as those

of laminar flow except for the terms p'W', — pu'2, — p VY'u', and — pv'H'. In
addition, if the pressure fluctuations within the boundary layer are considered,
then another term, nanely, — 3% p ﬁ?, should be included on the left-hand

side of (6.10). For flow conditions away from separation, the terms =— p u'?
and - o v-'7, known as Reynolds normal stresses, are small and will be neglected.
Hence, with all these simplifications, the governing equations for the compres-
sible turbulent boundary layer become:

CONTINUITY
6 k \ B k TR
5 (rPu+ e [r (p v+ o'v')] =0 (6.13)
MOMENTUM
puBr v B, L2 [k, )] (6.14)
r
ENERGY
S ARl A e O I A
r
(6.15)

where the term - p u'v', known as the Reynolds shear stress, is eliminated
through the use of Boussinesq's eddy-viscosity (€) concept and the term
— p v'H' is eliminated through the use of an eddy-conductivity ()‘T) concept.

-pt-x'_vT-e% (6.16)
—— )‘T OH
-p V'H' = -3; o (6.17)
(o] €
(6.18)

,_3-'?
4

Ir ( )w denotes wall, the boundary conditions to be considered are:

MOMENTUM
u(x, 0) = 0
v(x, 0) =0 or v(x, 0) = v, (mass transfer)
lim u(x, y) = ue(x)
y -

e o s ki e frag . i i it




ENERGY
H(x, 0) =H, or S (x 0) = (&) /5,208)
lim H(x, y) = H_(x) (6.20b)

y s ®
6.2 Formulation of Eddy Viscosity and Turbulent Prandtl Number

In order to solve the comprv.ssible turbulent boundary-layer equations
given in the last section, it 3s necessary to use expressions for eddy vis-
cosity and turbulent Prandtl number. The eldy-viscosity formulation that will
be used in this study is the same as the one used for incompressible flow in
a previous study [7). This formulation has worked well for incompressible flow
and hence it was decided to extend it, with small modifications, to compressible
flow. In this formulation, the boundary layer is regarded as a composite layer
characterized by inner and outer regions. In the inner region, an eddy vis-
cocity based on Prandtl's mixingelength theory is used; in the outer region, a
nearly constant eddy viscosity is used. It is exactly constant when the flow
is incompressible and without heat transfer. An intermittency factor is applied
to this basic "outer viscosity".

6¢2,.. Viscosity in the inner region.
In the inner region, the eddy viscosity is represented by Prandtl's formula
based on the mixing-length theory; that is,

1

€, = p 12 l%' (6.21)
where £, the mixing length, is given by ¢ = kly. However, to account for
the viscous sublayer close to the wall, a modified expression for (£ 1is used

in (6.21). This modification, suggested by Van Driest [14] and developed by
consideration of a Stokes-type flow, is

¢ =k y(1 = exp(= y/A)] (6.22)

Substituting this expression for £ into (6.21) gives




22a

e =P ki yoIL = exp(- y/A)]2 I%I (6.23)

This expression, as it stands, applies to incompressible flows. The
quantity p is a constant, kl = 0.4, and A 1is a constant for a given stream-
wise location in the boundary layer, defined as 26v(p/1w)l/ ¥, Equation (6.23)
shows that as y increases, the exponential term disappears, leaving Prandtl's
form, na.mei.y, equation (6.21). It also shows that, for y -0, €; should
vary 85 Yy . The latter conclusion is in contrast to the behavior of eddy-
viscosity expressions proposed by Townsend [15] and Reichardt [16], which show
that ¢, should vary as P On the other hand, (6.23) has the same behavior
close to thehwa.ll as Deissler's eddy-viscosity expression [17]; that is, €
varies as y a.sh y 0. An analysis given in Appendix A indicates that €
should vary as y as y =+0.

Equation (6.23) can also be applied to compressible flows if p is taken
to be a variable and if the exponential term is modified to account for the
heat transfer in the sublayer. A logical generalization is to consider a
Stokes-type flow in which the fluid has a variable viscosity. An analysis
given in Appendix B indicates that the eddy-viscosity formula for the inner
region should now be

1
2 2
_ .22 _ o Y 21 ] du
€, =PK Y ol exp-l \—; > A} IB?I (6.24)

where A = 26vw(pw/1w)l/2 and Vv is the mean value of Vv obtained by averaging
(6.24) over some arbitrary distance, perhaps the sublayer. As an initial step,
the ratio of v"_/\T is assumed to be unity. At high wall temperatures, the
exponential term will decay rmuch more slowly with y. For example, on a wall
with a temperature of 0°F at sca level, A‘\/: = 2,25 x 107", on a wall with
a temperature of 3000°F at 50,000 feet, A-\/x_w‘ = 5,46 x 10'3, or more than

20 times as large.

6.2,2 Viscosity in the outer region.
In the work on incompressible flcws, the form for eddy viscosity in the

outer region suggested by Clauser [5] was used; that is,




e, = ko ueB* (6.25)

where the constant k, is taken to be 0.0168, the value given in [18]. The
same formule is used for compressible flow, except that p is a variable;
that is, p = p(x, y). Equation (6.25) is modified by an intermittency
factor 7 that was obtained by Klebanoff [19]. It is given by

7:

o] | o

1 —erfs (% ~-.78)] (6.26)

where & 1is the thickness of the boundary layer. This formula was deduced
from measurements of an incompressible flow, and, for want of anything better,
it is also used for compressible flow. With (6.26), the eddy-viscosity formula
for the outer region becomes

€, = Pk, u Bl y (6.27)

o}
6.2.3 Definition of inner and outer regions.

The constraint used to define the end of the inner region and the be-
ginning of the outer region is the continuity of the eddy viscosity. It can be
seen from (6.24) and (6.27) that, at a given position along the body, € in-
creases with y and € remains constant over practically the whole boundary

layer. Hence, from the wall outward, the expression for inner eddy viscosity

applies until
€, = ¢ (6.28)

or, in terms of the distance from the wall, inner and outer regions thus can be
defined as

2
€ =0 ki y2[1 = exp{- (v“/\7)1/2 %}] |§§| 0Osysy,  (6.29)
€, = P kyu, 5 y y.sysb (6.30)

where y_  is determined by (6.28).
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6.2.4 Turbulent Prandtl number.

The turbulent Prandtl number is & measure of the ratio of eddy viscesity
to eddy conductivity, that is, the ratio of the transport of momentum to the
transport of heat. Since the flow in the outer region shows some similarity

to a wake flow, one may argue that a more realistic formulation of turbulent
Prandtl number requires a separate expression in each region, as in eddy-vis-
cosity formulation. The fact that in boundarylayers the ratio of eddy con-
ductivity to eddy viscosity is smaller than in free turbulence permits one to
conclude that the lowering of this ratio is due to the influence of the wall
[20]. Consequently, if the ratio of eddy conductivity to eddy viscosity is
lowered by the effect of the wall, it follows that this ratio decreases with
decreasing wall distance and increases with increasing wall distance. It
appears that at large wall distance this ratio approaches the value 2, that is,
the same value observed for free turbulence. On the other hand, no experimental
results have been obtained on the minimum value of this ratio in the immediate
neighborhood of the wall. For these reascns, as an initial step the turbulent
Prandtl number is assumed to be & constant and equal to unity.

6.3 Transformation of Boundary-layer Equations

Before (6.13), (6.14), and (6.15) can be solved, by a method to be des-
cribed later, it is convenient to transform them to a coordinate system that
removes the singularity at x = 0 and stretches the coordinate normal to the
flow direction, as is usually done in laminar flow. First, the equations are
placed in an almost two-dimensional form by the Probstein and Elliot transfor-
mation [21].

PROBSTEIN-ELLIOT TRANSFORMATION

R )2
dx=< = ) dx (6.31)

k
dy = r—L;l_x)- dy (6.32)

where ro(x) is specified by the body shape and r(x, y) is given by (see
figure L)
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Figure 4.-Coordinates for axially symmetric body.

r(x, y) = ro(x) +y cos a (6.33)

Then from (6.31) and (6.32),

k.2
3w 3% B v 3 [ z
5 % x8?=(TO) 5+ E S (6.34)
3 d ¥ e a
yy=g§§§ —L_ (6.35)

Define a stream function v that satisfies the continuity equation (6.15),
namely,

% = rkp u (6-3&.)
g_t =K o
- = = r (p v + p_v) (6-56b)
Iet ; = % '(T =1 ; =V
pive = 0'7 € = ¢ Pr,, = Pr Sel
T T




Now if in the barred plane the continuity equation (6.13) is written as

A—_(pl-l.)"'%(p;"' p'v?) = 0 (6.38)
Ax dy
then the stream function ¥ that satisfies this equation is
i LT N (o7 + ) (6.39)
dy x
g Therefore. if the relations defined by (6.34), (6.35) (6.37) and (6.39) are
3 used, (6.36a) and (6.36b) become
— K — =
pu=Ld =Lk<_£_é§ - 0¥ (6.408)
ro Y dy dy
= __L % ___L -1> 6.40b
pv+ p'v rk §§ K ( )

By substituting from (6.40) into (6.14) and using the relations given by
(6.34), (6.35), and (6.39), the following Probstein-Elliott transformed

momentum equation is obtained:

WD LN _WD l_i _2+_
wa\Pyx/ xo >

Tl
1+ t)%Ku(1 + m )357(0 a; )]

(6.41)

where t is the transverse-curvature term defired as

= -‘;{— cos a (6.42)
0
by using the relationship between r(x, y) and ro(x) given by (6.33).
Note that in (6.41) the cddy-viscosity term has a bar. This is necessary
because ¢ is not & scalar funct’on (e.g., like p) and must be transformed
by (6.31) and (6.32).

Similarly, the energy equation (6.15) may be transformed into the form




=B

dx Ox l-’rT a_y.-
3y d 13y |
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by using (6.40), (6.34), (6.35), and (6.39). Equations (6.41) and (6.43)

have the desired two-dimensional form.

Next, the Levy-Lees transformation [22] is introduced, in order to put
(6.41) and (6.43) into a still more convenient form.

LEVY-LEES TRANSFORMATION

df = pu u dx (6.44)
P u, _ AT

dn = — dy U5
(28)*/
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